

The Potential of Nanotechnology in Healthcare

Rajiv Saini, Santosh Saini¹, Sugandha Sharma²

Departments of Periodontology, ¹Microbiology and ²Prosthodontics, Oral Implantology, Rural Dental College - Loni, Maharashtra, India

ARTICLE INFO:

Received: 07-04-2020

Revised: 16-05-2020

Accepted: 14-06-2020

ABSTRACT:

There are several potential medical uses for nanotechnology, a fascinating new field of study. Various fields, including medical imaging, medication delivery, illness diagnostics, and so on, are aimed at outlining in this article.

KEYWORDS: Nanotechnology, the future of medicine

INTRODUCTION

Engineering and research that deal with materials and technologies whose smallest functional organisation, in at least one dimension, is on the nanoscale scale—one billionth of a meter—are known as nanotechnology. When working at these scales, it's crucial to think about how the macroscopic chemical and physical properties of a material or device are controlled by the basic molecular structure, which in turn is controlled by individual molecules and interacting groups of molecules.^[1] Nanotechnology has several medical uses, some of which are detailed in this article

THE POTENTIAL NANOTECHNOLOGICAL MECHANISMS USED IN HEALTHCARE

For medical and physiological purposes, these materials and devices can be engineered to engage with cells and tissues on a molecular (i.e., subcellular) level with a great level of functional specificity, enabling a level of technological integration with biological systems that was previously unimaginable. It is important to recognise that nanotechnology is not a new field of study in and of itself, but rather the result of collaboration between several established scientific disciplines, including biology, chemistry, physics, materials science, and physics, in order to pool the knowledge and resources necessary to create these innovative tools.^[1] Nanotechnology has great promise since it has the potential to bring forth both new tools and capabilities and enhancementstoexistingones. Changes to the bioactivity and basic characteristics of substances may be effected via nanoscale manipulation of

pharmaceuticals and other materials. These instruments may make it possible to regulate the many properties of substances like:[2] a) changes to solubility and blood pool retention time b) periods of controlled release either short or long c) controlled release triggered Environmental factors or delivery to very

Potential Medical Uses of Nanomaterials

Fluorescent biological labels have many uses in fields such as tissue engineering, bio-detection of pathogens, protein detection, DNA structure probing, phagokinetic studies, MRI contrast enhancement, and tumour detection. the molecular occurrences of an illness that is already present, sometimes before it becomes apparent later on. To improve the sensitivity, specificity, and signalling capacities of different biomarkers in human illnesses, the combination of nanotechnology and molecular imaging offers a flexible platform for the innovative creation of nanoprobes.[5]

Imaging methods may be equipped with improved signal sensitivity, spatial resolution, and the capacity to transmit information about biological systems at the molecular and cellular levels via the use of nanoparticle probes. As a contrast enhancement probe for magnetic resonance imaging (MRI), simple magnetic nanoparticles may serve the purpose.

Multimodal imaging, gene transfer, and cellular trafficking may all be facilitated by the incorporation of additional functional moieties into these magnetic nanoparticles, such as radionuclides, fluorescent tags, and other biomolecules. Magnetic resonance imaging (MRI) using adenovirus-magnetopolymer hybrid probes can visually identify target cells, monitor gene delivery, and track the production of green fluorescent proteins.[6] Using nuclear methods like positron-emission tomography

third Nanomachinery, which consists of quantifiable molecular-scale components, is the ultimate target of nanomedicine research. Advanced technologies for the early detection and treatment of different illnesses may be developed by a better knowledge of the cellular processes in live cells and through precise control and manipulation of nanomachinery in cells. This finding is important because it will help shape nanoscale imaging methods that study molecular processes in live cells by providing a platform technology.[4] Recently, molecular imaging has become an effective method for visualising

(PET) might allow for the usage of nanoparticles at lower concentrations than what is allowed by regular MRI, thanks to their superior detection sensitivity. In addition, hybrid imaging, which combines PET's high sensitivity with CT's anatomical complexity, may be able to map signals to regions of atherosclerotic vascular disease.[7] The accumulation of the contrast agent at the target location is an essential step in molecular imaging. One technique to do this more effectively is by guiding nanoparticles that contain the contrast agent into the target. This requires the use of targeting groups in order to reach target molecules that are concealed behind tissue barriers. Nanoparticles carrying several contrast groups enhance signals for imaging techniques that are not very sensitive. In theory, it is possible to contain the contrast medium and the medicine, enabling parallel tracking of its bio-distribution and therapeutic efficacy (theranostics).[8] A large variety of nanofiber-based scaffolds with varying pore sizes, high porosity, and surface area to volume ratios exist on the market. This varied set of conditions is ideal for cell adhesion, development, and proliferation, and it lays the groundwork for future improvements to an electrospun

It follows that the interdisciplinary scientific discipline of nanotechnology, which involves the molecular level manufacturing of systems and devices, is seeing rapid expansion.

REFERENCES:

1. Silva GA. Nanotechnology: An Overview and Its Medical Uses. *The surgical neurological journal* from 2004 was 61:216–20.
2. Rutherford SD, Wickline SA, and Lanza GM. Medical uses of nanotechnology. *Clinical and Translational Biotechnology*, 2007;18:26-30.
- Thirdly, OV Salta discusses the biological and medical uses of nanoparticles. Vol. 2, Issue 3 of the *Journal of Nanobiotechnology*, 2004.
- #4. Logothetidis S. The use of nanotechnology in healthcare: nanomedicine and the future of medicine. Published in *Hippokratia* 10:7-21 in 2006.
- Five, Jones. The present state of nanotechnology in molecular imaging and its application to medical diagnostics using nanoprobe. The

Nanotechnology originated from the hope of achieving ground-breaking improvements in fields such as robotics, genetics, communications, and medicine

article "Curr Nanosci" was published in 2008 and includes pages 17–29. No. 6, Cheon and Lee. Nanoparticles that work together as multimodal probes in nanobiotechnology for a more complete picture. Acc Citation: *Chem. Res.* 2008, 41: 1630–1640.

7. The authors of the study include Nahrendorf, Zhang, Hembrador, Panizzi, Sosnovik, Aikawa, and others. Imaging macrophages in inflammatory atherosclerosis using nanoparticle PET-CT data. *Heart & Stroke* 2008;117:379–387. Molecular imaging with nanoparticles: Small players play big roles (Debbage & Jaschke, 2008). The published article is from 2008 and is titled "Histochem Cell Biol".